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Contact angle calculations from the contact/maximum
diameter of sessile drops
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SUMMARY

This paper presents two algorithms for computing the contact angle of sessile liquid drops given data
about the drops. The first yields the contact angle given the volume, surface tension and maximum
diameter (or contact diameter) of a single drop. This algorithm is an extension of existing algorithms
based on knowledge of the maximum diameter or of the contact diameter of a drop. A sensitivity analysis
is included for this algorithm, allowing estimates to be made of the error in computed contact angle
caused by errors in the measurement of the volume and/or diameter. The second algorithm requires only
the volume and maximum or contact diameter of two different drops as input, and it produces both the
contact angle and surface tension as output. Both algorithms are based on Newton’s method applied to
a function whose value is computed by solving a system of ordinary differential equations obtained from
the Laplace equation of capillarity. The techniques are applicable to both hydrophobic and hydrophilic
surfaces. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finding the contact angle between a liquid and solid substrate by using small axisymmetric
sessile drops has been the subject of several papers [1–3]. Experimentally, the method requires
only small amounts of liquid and only a few square millimeters of substrate. There are several
different techniques for calculating the contact angle formed. Probably the simplest consists of
taking a photograph of the drop from the side and using a protractor to measure the contact
angle. More sophisticated methods involve approximating the drop shape with ellipses [4,5] or
fitting prescribed curves to specific data points on the drop profile. The axisymmetric drop
shape analysis-profile (ADSA-P) [6] improves the method by fitting an arbitrary set of profile
co-ordinate points to the Laplace equation of capillarity. In addition, this method can be used,
at the expense of more points and computational effort, to estimate other drop parameters,
such as the interfacial tension, volume and surface area.
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However, these methods have serious shortcomings. They are inaccurate for biological and
other hydrophilic surfaces because the extremely flat profiles of the drop make it difficult to
acquire accurate co-ordinates along the drop surface. Moreover, they are inapplicable to
situations in which a side view of the drop cannot be obtained. To address the first problem,
Reference [7] introduced the ADSA-CD (contact diameter) method in which the contact angle
is calculated, again by integrating the Laplace equation of capillarity, from knowledge of the
drop surface tension, volume and contact diameter. This method was subsequently modified in
Reference [8] as the ADSA-MD (maximum diameter) method to use not the contact diameter
but the maximum diameter. Thus, drops for which the contact angle exceeds 90° can be
analyzed with only an overhead view and the advantages of the ADSA-CD method are
retained. A generalized algorithm that includes both References [7,8] as special cases is given
in Reference [9].

In the present paper, a modification and extension of the ADSA-CD/MD methods are
proposed. The volume and drop diameter (either contact or maximum) of two different sized
drops are used, but the liquid/air surface tension as input is no longer required—instead this
parameter is calculated as part of the algorithm. Because the single drop theory of References
[7,8] is required in the two-drop problem, a unified and slightly enhanced treatment of these
methods, including an analysis of the sensitivity of the procedure to input errors, is presented
first. The analysis applies specifically to the maximum diameter problem—the small changes
required for the contact diameter set-up are indicated where appropriate. The results are then
extended to include the two-drop experiment.

2. SINGLE DROP—THEORY

The Laplace equation of capillarity arises from the balance of pressure and tension forces in
the drop surface

g(k1+k2)=DP (1)

where k1 and k2 are the principal curvatures and DP is the pressure difference across the
interface. With gravity as the only external force, this pressure difference is a linear function
of height

DP=DP0+g(Dr)z (2)

where DP0 is the difference across the droplet interface at the top of the drop, Dr is the density
difference between the drop and the surrounding medium, and z is the distance below the top
of the drop (Figure 1). Equations (1) and (2) then reduce to

k1+k2=2k+az (3)

where k is the mean curvature at the origin and a=g(Dr)/g.
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Figure 1. Co-ordinate system for the sessile drop. s is arc length along the drop measured from the origin
and f is the angle of the tangent below the x-axis. The radius of the drop is R and f=fc at the point
of contact with the substrate. For the CD experiment, R is the radius of the drop at the substrate level.

For an axisymmetric drop, the shape is completely determined by a single meridian, which
it is convenient to parametrize in terms of arc length s measured from the origin. The two
principal curvatures are given [10, p. 3] by the formulae

k1=
df

ds
and k2=

sin f

x

and so Equation (3) can be written as the system of ordinary differential equations (ODE)

dx
ds

=cos f, x(0)=0

dz
ds

=sin f, z(0)=0

df

ds
=2k+az−

sin f

x
, f(0)=0

Â
Ã
Ã
Ì
Ã
Ã
Å

(4)

Since the solution of these equations depends on k as well as s, we write x(s, k), z(s, k) and
f(s, k). In order to compute the volume V of the drop, we augment this system with the
additional equation

d6
ds

=px2 sin f, 6(0)=0 (5)

whose integral gives the volume 6(s, k) of liquid above the point with parameter s.
In Equation (4) for this single drop case, the parameter a is assumed known. The drop

volume V and outer radius R (as viewed from above) are measured and therefore also known.
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Once the value of k has been determined, the desired contact angle fc is found by solving
Equations (4) and (5) until 6=V and then f=fc (or if f=p before 6=V, then the volume
of the drop is too large for the given radius and the drop is unrealistic). To compute the value
of k, the shooting method is employed as follows. For a given k, let S(k) be the value of s at
which the solution of Equations (4) and (5) satisfies either f=p/2 or 6=V, whichever occurs
first. To find k we need to solve the equation X(k)x(S(k), k)=R. This is accomplished by
iterating the Newton algorithm

k�k−
X(k)−R

X %(k)

until the desired accuracy is obtained. The derivative X %(k) is found from

X %(k)=xk+ (cos f)S %(k)�s=S(k)

where the subscript k denotes differentiation with respect to k. The last term disappears in the
case f=p/2. In the other case, 6(S(k), k)V with derivative 6k+ (px2 sin f)S %(k)=0.
Substituting for S %(k) above yields

X %(k)=xk−
6k

px2 cot f
)
s=S(k)

and since cot f=0 when f=p/2 this equation holds in all cases. Finally, xk and 6k are
computed by numerically solving Equations (4) and (5) together with the following system,
obtained by differentiating (4) and (5) with respect to k

dxk

ds
= − (sin f)fk, xk(0)=0

dzk

ds
= (cos f)fk, zk(0)=0

dfk

ds
=2+azk−

cos f

x
fk+

sin f

x2 xk, fk(0)=0

d6k
ds

=2px(sin f)xk+px2(cos f)fk, 6k(0)=0

Â
Ã
Ã
Ã
Ì
Ã
Ã
Ã
Å

(6)

Precise details on the numerical methods used to implement the described scheme are given in
Section 4.

Note that the previous analysis recovers the ADSA-CD method by letting S(k) be the value
of s when 6=V.
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3. SINGLE DROP—SENSITIVITY ANALYSIS

The computed value of the contact angle fc is a function of the data R and V. The following
analysis shows how errors in the data, DR and DV respectively, are reflected in the calculated
value of fc. Writing fc=F(R, V) and using matrix notation, the error Dfc in the computed
value of fc is approximated by

Dfc#FRDR+FVDV= (DR, DV)DF, where 9F= (FR, FV)T (7)

in which the R and V subscripts denote partial derivatives. The gradient 9F is calculated as
follows. Write K(R, V) for the computed value of the curvature k, S1(R, V) for the value of s
at which x attains the maximum and S2(R, V) for the value of s at which the drop contacts the
substrate (so S1=S2 in the hydrophilic case fcBp/2). Then, F(R, V)=f(S2(R, V), K(R, V)),
so by the chain rule

9F=
�S2R KR

S2V KV

��(2k+az− (sin f)/x)2

(fk)2

�
(8)

where ( · )j indicates evaluation at s=Sj. On the other hand, differentiating the identities

x(S1(R, V), K(R, V))R and 6(S2(R, V), K(R, V))V

with respect to R and V yields the four equations

(cos f)1S1R+ (xk)1KR=1

(cos f)1S1V+ (xk)1KV=0

(px2 sin f)2S2R+ (6k)2KR=0

(px2 sin f)2S2V+ (6k)2KV=1

Now S1S2 or (cos f)10. In either case we can replace S1 by S2 in these equations, which
leads to

�S2R KR

S2V KV

��(cos f)1 (px2 sin f)2

(xk)1 (6k)2

�
=
�1 0

0 1
�

and substituting into Equation (8) shows finally
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9F=
�(cos f)1 (px2 sin f)2

(xk)1 (6k)2

�−1�(2k+az− (sin f)/x)2

(fk)2

�
In terms of relative errors, Equation (7) can be written in the form

Dfc

fc

#FR

DR
R

+FV

DV
V

, where FR=
R
fc

FR and FV=
V
fc

FV

For extremely hydrophobic substrates (f)1=p/2 and fc= (f)2�p so the coefficient matrix in
9F becomes singular. This suggests (and Table II confirms) that both FR and FV become
infinite, rendering this method of calculating contact angles unsuable. At the other extreme for
small s is it easy to see that, to leading order as s�0,

x�s, z�
1
2

ks2, f�ks, 6�
p

4
ks4

xk�−
1
3

ks3, zk�
1
2

s2, fk�s, 6k�
p

4
s4

Now at the point of contract, x(s)=R and 6(s)=V so s�R and (p/4)ks4�V, which yields

FR�−3 and FV�1 as fc�0

Thus, the method is viable for extremely hydrophilic surfaces, although R must be determined
accurately. These results are borne out in Table I in Section 4.

Note that the ADSA-CD method is again recovered by replacing all occurrences of ( · )1

with ( · )2. In particular, the coefficient matrix in 9F no longer becomes singular in the limit
fc�p since the (cos f)1 entry now approaches −1 instead of 0. Thus, ADSA-CD remains a
viable method even for extremely hydrophobic surfaces, although measuring the contact
diameter accurately becomes difficult since the actual point of contact is hard to determine
with certainty. Again these results are evident in Table III.

4. SINGLE DROP—NUMERICAL EXPERIMENTS

Tables I, II and III show the results of implementing the algorithm discussed in the previous
sections for various values of V and a on both hydrophilic (in which case the CD and MD
methods coincide) and hydrophobic surfaces. In each case, the sensitivity factors are also
computed and displayed.

The solution of Equations (4)–(6) was computed using the standard fourth-order Runge–
Kutta algorithm with an initial step length of R/10. (Reducing the initial step length to R/100
had no effect on the calculated values to the precision shown.) Precise values for S, S1 and S2

were determined by stepping forward until the required criterion was exceeded, taking one step
back, decreasing the step length by a factor of 10 and repeating the process until the desired
accuracy was attained. See Sections 2 and 3 for the definitions of S, S1 and S2.
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Table I. Computed contact angles (°) and sensitivity factors for various drop
volumes and surface tension on hydrophilic surfacesa.

V k fca FR FV

0.5 0.563 34.3 −2.7 0.90.0
1.0 0.863 59.7 −2.1 0.7
1.5 0.973 76.6 −1.6 0.5
2.0 1.000 88.2 −1.3 0.4

1.0 0.5 0.515 35.9 −2.6 0.9
1.0 0.774 63.2 −2.1 0.7
1.5 0.852 82.5 −1.6 0.6

0.5 0.365 41.65.0 −2.4 0.9
1.0 0.512 75.7 −2.0 0.8

a The maximum/contact radius of the drop R=1.

The Newton algorithm to determine k was started with the initial estimate k=1/R or, if the
drop parameters were close to those of the previous run, the previous value of k was used.
Since Equations (4)–(6) are invariant under the (non-dimensionalizing) transformation

s�
s
R

, x�
x
R

, z�
z
R

, f�f, 6�
6

R3 , k�kR, a�aR2

we lose no generality in considering only R=1 in the computed results.

Table II. Computed contact angles (°) and sensitivity factors for various drop
volumes and surface tension on hydrophilic surfaces using the MD methoda.

V k fc FVa FR

97.5 −1.42.5 0.50.0 1.000
1.000 107.3 −1.8 0.63.0

3.5 1.000 119.1 −2.4 0.8
4.0 1.000 138.0 −5.3 1.8

−1.797.50.858 0.62.01.0
0.858 114.9 −2.4 0.92.5
0.858 147.4 −7.03.0 2.7

104.9 −2.21.5 0.95.0 0.525
0.525 177.1 −81.5 35.02.0

a The maximum/contact radius of the drop R=1.
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Table III. Computed contact angles (°) and sensitivity factors for various drop
volumes and surface tension on hydrophilic surfaces using the CD methoda.

V k fca FR FV

2.5 0.993 96.6 −1.1 0.40.0
3.0 0.975 102.8 −1.0 0.3
3.5 0.952 107.8 −0.9 0.3
4.0 0.929 111.7 −0.8 0.3

2.0 0.853 96.8 −1.41.0 0.5
2.5 0.827 107.9 −1.2 0.5
3.0 0.792 117.2 −1.1 0.4

1.5 0.516 103.15.0 −1.7 0.7
2.0 0.469 126.5 −1.5 0.7

a The contact radius of the drop R=1.

5. TWO DROPS

Given the radius R and volume V of the sessile drop, the single drop analysis calculates the
contact angle. The angle thus determined depends on a ; denote it by FR,V(a). Figure 2 shows
the graph of FR,V versus a for two different sized drops (R1, V1) and (R2, V2). The surface
tension parameter a can be found by solving the single equation

FR 1,V 1
(a)=FR 2,V 2

(a) (9)

and then the contact angle is simply the common F value.

Figure 2. Graphs showing the contast angle fc versus a for two drops of given volume and radius. The
intersection of the graphs gives the contact angle and surface tension g=g(Dr)/a. Here R1 and R2 are

the maximum drop diameters.
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To solve Equation (9) we again use Newton’s algorithm

a�a−
FR 1,V 1

(a)−FR 2,V 2
(a)

F%R 1,V 1
(a)−F%R 2,V 2

(a)

To calculate the derivate F %R,V(a) we proceed as follows. Begin by augmenting the system
(4)–(6) to include a derivatives

dxa

ds
= − (sin f)fa, xa(0)=0

dza

ds
= (cos f)fa, za(0)=0

dfa

ds
=z+aza−

cos f

x
fa+

sin f

x2 xa, fa(0)=0

d6a
ds

=2px(sin f)xa+px2(cos f)fa, 6a(0)=0

and write x(s, k, a) . . . for all the dependent variables to show their dependence on s, k and
a. Let K(a) be the computed value of the curvature k, S1(a) be the value of s at which x attains
its maximum and S2(a) be the value of s at which the drop contacts the substrate. Then,
FR,V(a)=f(S2(a), K(a), a) and so

F%R,V(a)=
�

2k+az−
sin f

x
�

2

S %2+ (fk)2K %+ (fa)2

= (S %2, K %)
�(2k+az− (sin f)/x)2

(fk)2

�
+ (fa)2 (10)

To find S %2 and K %, we differentiate the identities

x(S1(a), K(a), a)R and 6(S2(a), K(a), a)V

with respect to a to obtain the equations

(cos f)1S %1+ (xk)1K %+ (xa)1=0, (px2 sin f)2S %2+ (6k)2K %+ (6a)2=0

As in Section 3, we can replace S1 by S2, so

(S %2, K %)
�(cos f)1 (px2 sin f)2

(xk)1 (6k)2

�
= − ((xa)1, (6a)2)
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Table IV. Newton iterations for drops R1=1, V1=3 and R2=2, V2=20a.

a FR 1,V 1
(a) FR 2,V 2

(a)

147.4 Undefined1.000
0.500 122.3 141.5

117.10.342 122.9
114.2 114.80.249
113.90.237 113.9

0.237 113.9 113.9

a Here R1 and R2 are the maximum drop diameters.

Inverting the matrix and substituting into Equation (10) yields

F%R,V(a)= − ((xa)1, (6a)2)9F+ (fa)2

where 9F is the vector defined in Section 3. Again, evaluating all expressions at s=S2

generalizes the ADSA-CD method to the two-drop experiment.
A little care is required in the Newton iteration because FR,V(a) is defined only for values

of a within some interval (assuming the given radius and volume are physically realizable). For
too large a value of a, the drop becomes flat and the required volume cannot be attained.
Moreover, Equation (9) may have no solution if the drops have grossly disparate shapes. In
light of these remarks, we implemented the algorithm as follows, starting with the value a=1.
If for a given a either FR 1,V 1

(a) or FR 2,V 2
(a) is undefined, simply divide a by 2. Otherwise,

perform a Newton step. If convergence is not attained after 20 Newton iterations, it is assumed
the drops are incompatible. (In all our numerical simulations convergence, when it occurred,
took no more than six iterations.) Table IV shows the iterations for the drops described in
Figure 2. From the sensitivity analysis of Section 3 it is clear that this method is inapplicable
to systems for which the contact angle is very large.

Application of this method to actual experiments performed at the University of Toronto
using a variety of liquids is reported in Reference [11]. There it was found that the algorithm
performed flawlessly with idealized data. In real applications the estimation of the surface
tension was very sensitive to input errors, particularly the radius of the drops when the drops
were small, and it was concluded that the method in its present form is viable for measuring
contact angle but not surface tension.

Remark
The dependence of contact angle on drop size is a matter of debate—some experiments in the
literature report an increase in contact angle with drop size and some a decrease. Gaydos and
Neumann [12] give experimental results of contact angle versus maximum drop radius for
n-alkane (do- through to hexa-) drops on carefully prepared Teflon (FEP) surfaces. They show
that the dependence of contact angle on drop radius is marked for small drops but less so for
large drops—contact angles varied by only 1° and 2° for radii larger than 3 mm or so. This
is consistent with the modified Young equation (14) of Reference [12]
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cos fc8C−
1
xc

where C (related to the substrate surface tension) is a constant and xc is the contact radius of
the drop.

6. CONCLUSIONS

This paper describes two numerical schemes for estimating the contact angle of sessile drops.
The first yields the contact angle given the volume, interfacial tension and maximum diameter
(or contact diameter) of a single drop, while the second yields estimates of both the contact
angle and surface tension of a liquid from the volume and outer radius measurements of two
different sized sessile drops. Sensitivity analysis indicates that the results are accurate for drops
on all but highly hydrophobic surfaces. Experiments performed at the University of Toronto
show that the second method works well for estimating the contact angle but fails to determine
the interfacial tension reliably. It should, therefore, be used to determine the contact angle
when the interfacial tension is not known and is not required.
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